您所在的位置:河大科研处 >>  学术活动专栏  >> 正文  
凤晓兵:Numerical Methods for an Optimal Transportation Problem(时间8.17)
【 作者:  校对时间:2019年08月17日 07:15  访问次数: 】

报告人:凤晓兵  美国田纳西大学教授

报告时间:8月17日上午9点

报告地点:数学与统计学院一楼学术报告厅

主办单位:数学与统计学院

欢迎光临!

    In this talk I shall present some convergent semi-Lagrangian methods
for approximating the optimal (mass) transportation problem with the quadratic cost density function. The class of methods is developed based on a fully nonlinear PDE formulation of the problem, which requires to solve a fully nonlinear second order Monge-Ampere type equation with an unusual boundary condition (or inclusion constraint condition), and on its Hamilton-Jacobi-Bellman reformulation. The focus of the talk will be on demonstrating how to deal with unusual boundary condition and how to overcome the difficulty caused by the lack of a comparison principle of the underlying PDE problem by a novel compactness argument. The convergence of the proposed semi-Lagrange method will be discussed and numerical experiments will also be presented to show the performance of the proposed method.

    凤晓兵,是美国田纳西大学(The University of Tennessee)数学系教授,副系主任、研究生部主任,西北工业大学长江讲座教授。1983年在西安交通大学计算数学系获学士学位,1985年在西安交通大学计算数学系获硕士学位,1992年在美国普渡大学(Purdue University)计算和应用数学系获博士学位。是SCI杂志Journal of Computational Mathematics 和International Journal of Computational Science and Mathematics的副主编,29种国际期刊的编委或长期审稿人;主持国际会议10余次;是美国数学会(AMS)和美国工业与应用数学会(SIAM)会员,2005年获得K. C. Wong Education Foundation (Hong Kong) Research Fellowship,多次获得UTK Professional Development 奖。
凤晓兵教授在计算和应用数学顶级杂志:SIAM J. Numerical Analysis,SIAM J. Math. Anal.,IMA J. Numerical Analysis,Mathematics of Computation, Numerische Mathematik,Journal of Scientific Computing,J. of Engineering Mathematics,Mathematical Models and Methods in Applied Sciences,Calculus Variations and PDEs等杂志上发表论文100余篇,出版专著两部:《Multi-scale Modeling and Simulation in Materials Sciences》和《Recent Advances in Numerical Methods for Partial Differential Equations and Applications》。