您所在的位置:河大科研处 >>  学术活动专栏  >> 正文  
冀诸超:Non-uniform hyperbolicity in polynomial skew products(时间8.23)
【 作者:  校对时间:2019年08月21日 12:57  访问次数: 】

报告人:冀诸超博士  索邦大学

报告时间:8月23日16:00

报告地点:数学与统计学院一楼报告厅

主办单位:数学与统计学院

欢迎光临!

    The dynamics of Topological Collet-Eckmann rational maps on Riemann sphere are well understood, due to the work of Przytycki, Rivera-Letelier and Smirnov. In this talk we study the dynamics of polynomial skew products of C^2. Let f be a polynomial skew products with an attracting invariant line L such that f restricted on L satisfies Topological Collet-Eckmann condition and a Weak Regularity condition. We show that the the Fatou set of f in the basin of L equals to the union of the basins of attracting cycles, and the Julia set of f in the basin of L has Lebesgue measure zero. As a consequence there are no wandering Fatou components in the basin of L (We remark that for some polynomial skew products with a parabolic invariant line L, there can exist a wandering Fatou component in the basin of L).

    冀诸超:

    学位:2012-2016,本科学位,武汉大学 (数学弘毅班)
          2016-2017,硕士学位,巴黎南大学 (Université Paris Sud),导师:Romain Dujardin
          2017-2020,博士学位在读,索邦大学 (Sorbonne Université),导师:Romain Dujardin