您所在的位置:河大科研处 >>  学术活动专栏  >> 正文  
戴求亿:Iterative method for Kirchhoff-Carrier type equations and its applications(时间10.25)
【 作者:  校对时间:2019年10月23日 16:28  访问次数: 】

报告人:戴求亿 湖南师范大学教授

报告时间:10月25日15:00

报告地点:数学与统计学院北研究生教室

主办单位:数学与统计学院

欢迎光临!

  报告摘要:Let $A(s, t)$ be a continuous function with a positive lower、bound $m$, and $\Omega$ be a bounded domain in $R^N$. In this short note, we propose an iterative procedure for finding nonnegative solutions of the Kirchhoff-Carrier type equations.The main advantage of our procedure is that the convergent proof of the iterative sequence depends only on comparison principle of the Laplace operator instead of comparison principle of Kirchhoff-Carrier type operator itself. Therefore, we almost need no restrictions on $A(s, t)$ except for continuous and a positive lower bound. This removes away the monotonicity assumption of $A(s, t)$ used in most papers based on sub-supersolution method. As applications of the abstract result obtained by our iterative method, some concrete examples are also studied。

  戴求亿,男,1963年4月生于湖南新宁,1997年5月中国科学院博士毕业,获博士学位,现为湖南师范大学数学系教授,博士生导师,院学术委员主任。主要研究兴趣为偏微分方程及其相关问题,在 J. Eur. Math. Soc, Adv. Math,Calc. Var. Partial Differential Equations,J. Differential Equations 等国际主流期刊发表文章40 余篇,主持多项国家基金面上项目。