报告人:陈酌 清华大学副教授
报告时间:12月1日9:00
报告地点:ZOOM ID:210 089 8623 密 码:123456
主办单位:数学与统计学院
欢迎光临!
报告摘要:The semi-classical data attached to stacks of algebroids in the sense of Kashiwara and Kontsevich are Maurer-Cartan elements on complex manifolds, which we call extended Poisson structures as they generalize holomorphic Poisson structures. A canonical Lie algebroid is associated to each Maurer-Cartan element. We study the geometry underlying these Maurer-Cartan elements in the light of Lie algebroid theory. In particular, we extend Lichnerowicz-Poisson cohomology and Koszul-Brylinski homology to the realm of extended Poisson manifolds; we establish a sufficient criterion for these to be finite dimensional; we describe how homology and cohomology are related through the Evens-Lu-Weinstein duality module; and we describe a duality on Koszul-Brylinski homology, which generalizes the Serre duality of Dolbeault cohomology. This is a joint work with Mathieu Stienon and Ping Xu.
陈酌,清华大学数学科学系副教授,博士生导师。2004年7月毕业于北京大学,获理学博士学位,2004年7月至2008年7月先后在首都师范大学和北京大学做博士后研究;2008年8月至2009年5月任美国宾州州立大学讲师;2009年5月至今在清华大学工作。主要研究领域:辛几何,非线性李理论与交换代数、Poisson李群胚,李2群、广义复几何、扩展Poisson结构等。主持科研项目有北京市青年英才计划、国家自然科学基金青年项目和面上项目。目前在J. Diff. Geom.,J. Symp. Geom.,Comm. Math. Phys.,J. London. Math. Society,J. Algebra,Int. Math. Res. Not.等国内外著名学术期刊上发表论文30余篇。