报告人:杜一宏 澳大利亚新英格兰大学教授
报告时间:3月11日9:00
报告地点:腾 讯 ID:314 181 749 密 码:123456
主办单位:数学与统计学院
欢迎光临!
报告摘要:Propagation has been modelled by reaction-diffusion equations since the pioneering works of Fisher and Kolmogorov-Peterovski-Piskunov (KPP). Much new developments have been achieved in the past a few decades on the modelling of propagation, with traveling wave and related solutions playing a central role. In this talk, I will report some recent results obtained with several collaborators on the Fisher-KPP equation with free boundary and "nonlocal diffusion". A key feature of this nonlocal equation is that the propagation may or may not be determined by traveling wave solutions. There is a threshold condition on the kernel function which determines whether the propagation has a finite speed or infinite speed (known as accelerated spreading). For some typical kernel functions, we obtain sharp estimates of the spreading speed (whether finite or infinite).
杜一宏教授,1988年在山东大学数学系获得博士学位,并留校工作;1990年赴英国Heriot-Watt大学访问,1991年至今在澳大利亚新英格兰大学工作,现为该校数学系教授。杜一宏教授是非线性泛函分析、偏微分方程及其应用等领域的国际知名专家,多次赴中国、美国、英国、德国、法国、西班牙,日本,加拿大等国家和地区的高校或科研机构访问。在Arch. Rational Mech. Anal., SIAM J. Math. Anal., J. Funct. Anal., J. European Math. Soc., Trans. Amer. Math. Soc., J. Differ. Equations, Calc. Var. Partial Differ. Equ., J. Math. Pures Appl.等国际知名期刊上发表论文120余篇(他引1700余次),并出版专著2部。自2003年持续获得澳大利亚国家自然科学基金的资助,自2013年任澳大利亚国家自然科学基金委评审专家。目前,担任多个国际期刊杂志的编委及20余个国际期刊杂志的特约审稿人。