当前位置 : 首页 > 学术报告 > 正文

王明新:Upper and Lower Solutions Method of Boundary Value Problems with Nonlinear Boundary Conditions(时间7.24)

发布日期:2021-07-20  作者:刘敏  浏览数:

报告人:王明新 哈尔滨工业大学教授

报告时间:7月24日15:00

报告地点:学院北研教室

主办单位:数学与统计学院

欢迎光临!

   报告摘要:In this talk we intruduce the upper and lower solutions method of boundary value problems with nonlinear boundary conditions. It will be shown that, if a boundary value problem of an elliptic equation (system) with nonlinear boundary conditions has ordered upper and lower solutions, then it has at least one solution (coupled quasi-solutions) located between the upper and lower solutions. Especially, if the system is quasi-monotone increasing or decreasing, then such coupled quasi-solutions are the solutions of this problem. It is well known that there are two approaches to the upper and lower solutions method of linear boundary conditions: fixed point method and monotonic iteration. However, the upper and lower solutions method of nonlinear boundary conditions can only be treated by monotone iteration, not fixed point method.

  王明新,教授,哈尔滨工业大学理学研究中心特聘教授、二级教授、博士生导师。河南省优秀专家称号及国务院政府特殊津贴获得者。1990年获得北京理工大学理学博士学位,1990-1994年在中国科学院从事博士后研究,1994.8-2009.9,东南大学数学系二级教授, 特聘教授, 博士生导师,江苏省数学学会副理事长,理学院副院长,应用数学研究所所长,应用数学硕士点和应用数学博士点学科负责人, 江苏省重点学科“应用数学”首席科学家。现为《应用数学》,《Advances in Differential Equations and Control Process》,《International Journal of Differential Equations》,《Advances in Pure Mathematics (APM)》,《理论数学》杂志编委,《Math. Review》评论员。已在Proc. London Math. Soc., Trans. Amer. Math. Soc., Indiana Univ. Math. J., SIAM J. Math. Anal., SIAM J. Appl. Math.等国际著名学术期刊上发表论文280余篇,同时还在科学出版社、高等教育出版社、清华大学出版社出版科技专著十部(七部为独著)。主持完成国家自然科学基金项目9项,在研一项;主持完成省部级项目8项。获得教育部科技进步三等奖2次,江苏省科技进步二等奖1次,高等学校科学研究优秀成果奖自然科学二等奖1次,江苏省首届青年科学家奖提名奖,河南省青年科技奖,江苏省优秀研究生指导教师,华英文化教育基金奖。