主 讲 人:蔡剑锋 香港科技大学数学系教授
报告时间:2021年11月5日10:00
报告地点:腾讯ID: 435 485 639
主办单位:数学与统计学院
欢迎光临!
Non-convex optimization is a ubiquitous tool in scientific and engineering research. For many important problems, simple non-convex optimization algorithms often provide good solutions efficiently and effectively, despite possible local minima. One way to explain the success of these algorithms is through the global landscape analysis. In this talk, we present some results along with this direction for phase retrieval. The main results are, for several of non-convex optimizations in phase retrieval, a local minimum is also global and all other critical points have a negative directional curvature. The results not only will explain why simple non-convex algorithms usually find a global minimizer for phase retrieval, but also will be useful for developing new efficient algorithms with a theoretical guarantee by applying algorithms that are guaranteed to find a local minimum.
蔡剑锋,香港科技大学数学系教授。2000年获复旦大学学士学位,2007年获香港中文大学博士学位。曾先后在新加坡国立大学,美国洛杉矶加州大学,和美国爱荷华大学工作。2015年加入香港科技大学数学系,并于2019年晋升正教授。研究兴趣是数据科学和成像技术中的算法设计和分析。在包括JAMS,ACHA,SIAM系列期刊,IEEE Trans.系列期刊,JMLR,CVPR,ICCV等发表论文70多篇。谷歌学术引用一万余次。在2017年和2018年被评选为全球高被引学者。