当前位置 : 首页 > 学术报告 > 正文

网络课程:何银年:Navier-Stokes方程的有限元方法(时间11.10、17、24,12.1)

发布日期:2021-11-08  作者:刘敏  浏览数:

课程题目:Navier-Stokes方程的有限元方法

主 讲 人:何银年 西安交通大学教授

时间及地点:

腾 讯 ID643 883 261111019:00-21:00

腾 讯 ID623 317 682111719:00-21:00

腾 讯 ID265 657 465112419:00-21:00

腾 讯 ID288 987 482120119:00-21:00

 

  摘要: In this work, a  finite element (FE)  method  is discussed for the 3D steady Navier-Stokes equations by using the finite element pair $X_h \times M_h$. The method consists of transmitting  the finite element solution $(u_h,p_h)$ ofthe 3D steady Navier-Stokes equations into the finite element solution pairs $(u_h^{n},p_h^{n})$ based on the finite element space pair$X_h \times M_h$ of the 3D steady linearized Navier-Stokes equations by using the Stokes, Newton and Oseen iterative methods.,where the  finite element space pair $X_h \times M_h$ satisfies the discrete inf-sup condition in a 3D domain $\O$. Here, we present the weak formulation of the FE method for solving the 3D steady Stokes, Newton and  Oseen iterative  equations and provide the existence and uniqueness of the FE solution $(u^n_h,p^n_h)$ of the 3D steady Stokes, Newton and  Oseen iterative  equations  and deduce the convergence with respect to $(\sigma^{n+1}, h)$ of the FE solution $(u^n_h,p^n_h)$ to the exact solution $(u,p)$ of the 3D steady Navier-Stokes equations in the $H^1-L^2$ norm.Finally, we also give the second order convergence with respect to $(\sigma^{n+1}, h)$ of the FE velocity $u^n_h$ to the exact velocity $u$ of the 3D steady Navier-Stokes equations in the $L^2$ norm.Furthermore, we also consider the first-order and second-order fully discrete FE methods for unsteady Navier-Stokes equations.

 

  专家简介:何银年,西安交通大学数学与统计学院二级教授,博士生导师,享受政府津贴专家,新疆大学“天山学者”讲座教授。曾担任陕西省计算数学学会理事长,陕西省数学学会常务理事,全国计算数学学会常务理事等。长期从事有关N-S方程组, MHD方程组及海洋流体动力学模型的有限元方法的理论和算法研究。连续主持国家自然科学基金7项,部分研究成果获2007年“国家自然科学二等奖”(第五完成人),2011年“教育部自然科学二等奖”(独立完成),2016年“陕西省科学技术一等奖”(第一完成人)。 在国内外杂志发表SCI文章240篇,在SIAM J. Numer Anal, SIAM J. Sci Comp, Numer Math, Math Comp, J Comp. Phys., Comput Methods Appl Mech Engrg, IMA J. Numer Analysis, Int J. Numer Methods Engrg 等计算数学类期刊上发表文章31 篇。