当前位置 : 首页 > 学术报告 > 正文

网络报告:吴冰灵:On certain properties of harmonic numbers(时间3.23)

发布日期:2022-03-21  作者:刘敏  浏览数:

报告题目:On certain properties of harmonic numbers

主 讲 人:吴冰灵  南京邮电大学讲师

时 间:3239:00

地  点:腾讯会议:818131516

主办单位:数学与统计学院

欢迎参加!

报告摘要:Let Hn be the reciprocal sum of 1, 2, · · · , n and let vn be its denominator. It is well known that Hn is not an integer for every integer n 2. Let L be the set of all positive integers n such that the denominator of 1 + 1/2 + · · · + 1/n is less than the least common multiple of 1, 2, . . . , n. In this talk, we prove that the set L has the upper asymptotic density 1 under a certain assumption on linear independence, and the assumption follows from Schanuel’s conjecture. We also get some properties of generalized harmonic numbers. This is a joint work with professor Yong-Gao Chen and Dr Xiao-Hui Yan.

专家简介:吴冰灵,南京邮电大学讲师,毕业于南京师范大学,师从陈永高教授,主要从事解析数论与组合数论方向的研究。