报告时间:5月29日
报告地点:ZOOM ID:975 2011 3597 密 码:123456
主办单位:数学与统计学院
欢迎光临!
报告1:(Re)active Fluids: Dynamic Boundary Conditions and Thermal Effects,柳春,芝加哥伊利诺伊理工学院教授,时间9:00开始;
摘要:We will discuss those materials involving the mechanics and chemical reactions. In particular we will explore the variational structures which provides the thermodynamical consistency for these systems. We will look at the recent work on dynamic boundary conditions under this general framework. Also we will look at the temperature effects related to these dynamics.
报告2:Debye Layer in Poisson-Boltzmann Model with Isolated Singularities,谢佳佑,香港中文大学研究员,时间10:30开始;
摘要:In this talk, we will show the existence of solutions to the charge-conserving Poisson-Boltzmann equation with Dirichlet boundary condition. In two dimensional space, the solutions can have isolated singularities at prescribed points in the domain. As for higher dimensional case, all isolated singularities are removable. As a small parameter tends to zero, solutions to the charge-conserving Poisson-Boltzmann equation develop boundary layers. In the interior of the domain, solutions converge to a unique constant. The limiting constant is explicitly calculated in terms of a novel formula which depends only on the Dirichlet boundary data. In addition, we give aquan-titativedescription on the asymptotic behavior of the solutions. This is a joint work with Yong Yu (CUHK).
报告3:Existence Results for Super-Liouville Equations,Aleks Jevnikar,University of Udine,时间17:00。
摘要:We consider super-Liouville equations on closed surfaces, which have a variational structure with a strongly-indefinite functional. We obtain the first existence results by making use of min-max methods and bifurcation theory. Joint project with Andrea Malchiodi and Ruijun Wu.
专家简介:
柳春,现任芝加哥伊利诺伊理工学院应用数学系教授、系主任。他于1995年在纽约大学库朗数学研究所获得博士学位,并从1998年开始就职于宾夕法尼亚州立大学数学系。柳春教授还曾担任明尼苏达大学数学及应用数学研究所(IMA)副所长。柳春教授的研究方向是非线性偏微分方程及其在复杂流体中的应用,例如液晶生长、聚合物和细胞膜离子通道。他发展了一类一般的能量变分方法(EnVarA)框架来研究物理和生物应用中的各种问题。
谢佳佑,香港中文大学数学系研究员。2014年博士毕业于台湾大学数学系。先后为台湾大学、香港城市大学、台湾理论科学研究中心、香港中文大学博士后。其主要研究领域为偏微分方程:包含非线性椭圆方程和抛物方程的理论分析,及其在物理、生物方面的应用。主要研究成果发表在Arch. Ration. Mech. Anal.,J. Differential Equations,SIAM J. Math. Anal.,Commun. Math. Sci.等期刊。
Aleks Jevnikar is an assistant Professor (Ricercatore RTD-B) in Mathematical Analysis at the University of Udine. He got his PhD at Scuola Internazionale Superiore di Studi Avanzati in 2015 and had postdoc positions at University of Rome Tor Vergata, University of Pisa and Scuola Normale Superiore di Pisa. His research interests lie in the field of elliptic partial differential equations that arise in mathematical physics and geometry, for example Liouville-type equations.